3. Reconnection of a counterrotating vortex pair

Leweke, T. ${ }^{1{ }^{1}}$ and Williamson, C. H. K. ${ }^{2}$

1) IRPHE, CNRS/Universites Aix-Marseille, 12 av. General Leclerc, F-13003 Marseille, France
2) Mechanical \& Aerospace Engineering, Cornell University, Ithaca, NY 14853-7501, USA

A pair of initially straight and parallel vortices is unstable to large-scale symmetric wavy perturbations (Crow instability). This figure shows the flow in a plane perpendicular to the vortex axes, at a location where the instability brings the vortices closer together. The Reynolds number based on the initial circulation is ~ 2000. In the dye visualization in (a), the vortex cores deform, they elongate vertically, and a tail of dye is developing behind the descending pair. In (b), the corresponding contours of vorticity (spacing $0.8 / \mathrm{s}$) obtained by Particle Image Velocimetry, show that this structure indeed corresponds to a tail of vorticity. At the end of this core interaction (vortex reconnection), the pair will have evolved into a series of vortex rings. For more information:
Leweke, T., Williamson, C. H. K.: "Three-dimensional dynamics of a counterrotating vortex pair", Proc. 8th International Symposium on Flow Visualization (ISBN 0-9533991-0-9), G. M. Carlomagno \& I. Grant (eds.), Paper 271 (1998).

